If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+64t+10=0
a = -16; b = 64; c = +10;
Δ = b2-4ac
Δ = 642-4·(-16)·10
Δ = 4736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4736}=\sqrt{64*74}=\sqrt{64}*\sqrt{74}=8\sqrt{74}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{74}}{2*-16}=\frac{-64-8\sqrt{74}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{74}}{2*-16}=\frac{-64+8\sqrt{74}}{-32} $
| 5x+x+18=28-x | | 4(3+x)=10x-2+x | | -16t^2+5t+8=0 | | -4x+3(-4x-14)=54 | | y^2-30-13y=0 | | 5x+13=17x-24 | | 16-3x=20-5x | | 11^n=39 | | -6x+4(5x+15)=-108 | | 180*(n-2)=1440n | | -4x-4(-4x+3)=108 | | 3(x+8)^2=83 | | (3x–4)(x–3)=8 | | -4x-4(-4x-14)=54 | | 3x-2(-2x-15)=79 | | C2+10c+24=0 | | 0.0.4x-0.9x=5.16 | | 78=-3x+3(3x+6) | | 1x+8=32 | | 4x−2−2x=x−5 | | -8(5+2y)=88 | | C=12.00+.07x | | -5(-15y-1)=2(7y-16)-y | | 2a^2-10=2a | | 10k-2÷3(9k+6)=4k-23 | | -(3x+5)-5=4(x+3)-5x | | x/12+12=21 | | x^2+7x+100=-10x-1 | | x/4-17=4 | | 6−x−3=4(x−2) | | -7=2(n+14)−13 | | 5^x2-15x=0 |